
CNT 4714: PHP – Part 2 Page 1 Mark Llewellyn ©

CNT 4714: Enterprise Computing

Spring 2010

Introduction to PHP – Part 2

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/spr2010

CNT 4714: PHP – Part 2 Page 2 Mark Llewellyn ©

Form Processing and Business Logic

• XHTML forms enable web pages to collect data from users

and send it to a web server for processing.

• Interaction of this kind between users and web servers is vital

to e-commerce applications. Such capabilities allow users to

purchase products, request information, send and receive

web-based email, perform on-line paging and take advantage

of various other online services.

• The XHTML document on the next few pages collects

information from a user for the purposes of adding them to a

mailing list.

• The PHP file on page 3 validates the data entered by the user

through the form and “registers” them in the mailing list

database.

CNT 4714: PHP – Part 2 Page 3 Mark Llewellyn ©

form.html Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- form.html -->

<!-- Form for use with the form.php program -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Sample form to take user input in XHTML</title>

</head>

<body>

<h1>This is a sample registration form.</h1>

Please fill in all fields and click Register.

<!-- post form data to form.php -->

<form method = "post" action = "form.php">

Please fill out the fields below.

<!-- create four text boxes for user input -->

<input type = "text" name = "fname" />

This XHTML document

generates the form that the

user will submit to the

server via form.php

CNT 4714: PHP – Part 2 Page 4 Mark Llewellyn ©

<input type = "text" name = "lname" />

<input type = "text" name = "email" />

<input type = "text" name = "phone" />

Must be in the form (555)555-5555

<img src = "images/downloads.gif"

alt = "Products" />

Which publication would you like information about?

<!-- create drop-down list containing magazine names -->

<select name = "magazine">

<option>Velo-News</option>

<option>Cycling Weekly</option>

<option>Pro Cycling</option>

<option>Cycle Sport</option>

<option>RadSport</option>

<option>Mirror du Cyclisme</option>

</select>

CNT 4714: PHP – Part 2 Page 5 Mark Llewellyn ©

Which operating system are you currently using?

<!-- create five radio buttons -->

<input type = "radio" name = "os" value = "Windows XP"

checked = "checked" />

Windows XP

<input type = "radio" name = "os" value =

"Windows 2000" />

Windows 2000

<input type = "radio" name = "os" value =

"Windows 98" />

Windows 98

<input type = "radio" name = "os" value = "Linux" />

Linux

<input type = "radio" name = "os" value = "Other" />

Other

<!-- create a submit button -->

<input type = "submit" value = "Register" />

</form>

</body>

</html>

CNT 4714: PHP – Part 2 Page 6 Mark Llewellyn ©

form.php Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- form.php -->

<!-- Read information sent from form.html -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Form Validation</title>

</head>

<body style = "font-family: arial,sans-serif">

<?php

extract($_POST);

// determine whether phone number is valid and print an error message if not

if (!ereg("^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$",

$phone)){

print("<p>

INVALID PHONE NUMBER:

A valid phone number must be in the form

(555)555-5555

Click the Back button, enter a valid phone number and resubmit.

Thank You.</p></body></html>");

die(); // terminate script execution

}

?>

Function extract

(associativeArray) creates a

variable-value pair

corresponding to each key-

value pair in the associative

array $_POST.

Function die() terminates script execution.

An error has occurred, no need to continue.

See page 17 for

explanation of regular

expressions.

CNT 4714: PHP – Part 2 Page 7 Mark Llewellyn ©

<p>Hi

 <?php print("$fname"); ?> .

Thank you for completing the survey.

You have been added to the

 <?php print("$magazine "); ?> mailing list.

</p>

The following information has been saved in our database:

<table border = "0" cellpadding = "0" cellspacing = "10">

<tr>

<td bgcolor = "#ffffaa">Name </td>

<td bgcolor = "#ffffbb">Email</td>

<td bgcolor = "#ffffcc">Phone</td>

<td bgcolor = "#ffffdd">OS</td>

</tr>

<tr>

<?php

// print each form field’s value

print("<td>$fname $lname</td> <td>$email</td> <td>$phone</td> <td>$os</td>");

?>

</tr>

</table>

<div style = "font-size: 10pt; text-align: center">

This is only a sample form. You have not been added to a mailing list.

</div>

</body>

</html>

CNT 4714: PHP – Part 2 Page 8 Mark Llewellyn ©

Execution of

form.html within a

web browser

CNT 4714: PHP – Part 2 Page 9 Mark Llewellyn ©

After execution of

form.php has

verified correct

entries made

within the form.

CNT 4714: PHP – Part 2 Page 10 Mark Llewellyn ©

After execution of

form.php has

verified correct

entries made

within the form.

CNT 4714: PHP – Part 2 Page 11 Mark Llewellyn ©

User enters an

improperly

formatted

telephone number

in the form.

CNT 4714: PHP – Part 2 Page 12 Mark Llewellyn ©

form.php issues

error regarding

improperly

formatted

telephone number.

CNT 4714: PHP – Part 2 Page 13 Mark Llewellyn ©

How the Form Example Works

• The action attribute of the form element, indicates that

when the user clicks the Register button, the form data

will be posted to form.php for processing.

• Using method = “post” appends the form data to the

browser request that contains the protocol (i.e., HTTP) and

the requested resource’s URL. Scripts located on the web

server’s machine (or accessible through the network) can

access the form data sent as part of the request.

• Each of the form’s input fields are assigned a unique name.

When Register is clicked, each field’s name and value

are sent to the web server.

• Script form.php then accesses the value for each specific

field through the global array $_POST.

CNT 4714: PHP – Part 2 Page 14 Mark Llewellyn ©

How the Form Example Works (cont.)

• The superglobal arrays are associative arrays predefined by

PHP that hold variable acquired from the user input, the

environment, or the web server and are accessible in any

variable scope.

– If the information from the form had been submitted via the HTTP
method get, then the superglobal array $_GET would contain the

name-value pairs.

• Since the HTML form and the PHP script “communicate”

via the name-value pairs, it is a good idea to make the

XHTML object names meaningful so that the PHP script that

retrieves the data is easier to understand.

CNT 4714: PHP – Part 2 Page 15 Mark Llewellyn ©

Register_globals

• In PHP versions 4.2 and higher, the directive

register_globals is set to Off by default for security

reasons.

• Turning off register_globals means that all variables

sent from an XHTML form to a PHP document now must be

accessed using the appropriate superglobal array (either

$_POST or $_GET).

• When this directive was turned On, as was the default case in

PHP versions prior to 4.2, PHP created an individual global

variable corresponding to each form field.

CNT 4714: PHP – Part 2 Page 16 Mark Llewellyn ©

Validation of Form Generated Data

• The form example illustrates an important concept in the

validation of user input. In this case, we simply checked the

validity of the format of the telephone number entered by the

client user.

• In general, it is crucial to validate information that will be

entered into database or used in mailing lists. For example,

validation can be used to ensure that credit-card numbers

contain the proper number of digits before the numbers are

encrypted to a merchant.

• In this case, the form.php script is implementing the business

logic or business rules for our application.

CNT 4714: PHP – Part 2 Page 17 Mark Llewellyn ©

Pattern Matching in PHP

• For powerful string comparisons (pattern matching), PHP
provides functions ereg and preg_match, which use
regular expressions to search a string for a specified pattern.

• Function ereg uses Portable Operating System Interface
(POSIX) extended regular expressions.

– POSIX-extended regular expressions are a standard to which PHP
regular expression conform.

• Function preg_match provides Perl-compatible regular
expressions.

• Perl-compatible regular expressions are more widely used
that POSIX regular expressions. PHP’s support for Perl-
compatible regular expressions eases migration from Perl to
PHP. The following examples illustrates these concepts.

CNT 4714: PHP – Part 2 Page 18 Mark Llewellyn ©

expression.php - Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- expression.php -->

<!-- Using regular expressions -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Regular expressions</title>

</head>

<body>

<?php

$search = "Now is the time";

print("Test string is: '$search'

");

// call function ereg to search for pattern ’Now’ in variable search

if (ereg("Now", $search))

print("String 'Now' was found.
");

// search for pattern ’Now’ in the beginning of the string

if (ereg("^Now", $search))

print("String 'Now' found at beginning of the line.
");

// search for pattern ’Now’ at the end of the string

if (ereg("Now$", $search))

print("String 'Now' was found at the end of the line.
");

^ matches at beginning

of a string

$ matches at end of a

string

CNT 4714: PHP – Part 2 Page 19 Mark Llewellyn ©

// search for any word ending in ’ow’

if (ereg("[[:<:]]([a-zA-Z]*ow)[[:>:]]", $search,

$match))

print("Word found ending in 'ow': " .

$match[1] . "
");

// search for any words beginning with ’t’

print("Words beginning with 't' found: ");

while (eregi("[[:<:]](t[[:alpha:]]+)[[:>:]]",

$search, $match)) {

print($match[1] . " ");

// remove the first occurrence of a word beginning

// with ’t’ to find other instances in the string

$search = ereg_replace($match[1], "", $search);

}

print("
");

?>

</body>

</html>

Uses a regular expression to

match a word ending in “ow”.

CNT 4714: PHP – Part 2 Page 20 Mark Llewellyn ©

Output From expression.php - Example

CNT 4714: PHP – Part 2 Page 21 Mark Llewellyn ©

Verifying a Username and Password Using PHP

• It is often the case that a private website is created which is

accessible only to certain individuals.

• Implementing privacy generally involves username and

password verification.

• In the next example, we’ll see an XHTML form that queries

a user for a username and password. The fields

USERNAME and PASSWORD are posted to the PHP script

verify.php for verification.

– For simplicity, data is not encrypted before sending it to the server.

– For more information on PHP encryption functions visit:

http://www.php.net/manual/en/ref.mcrypt.php.

http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php

CNT 4714: PHP – Part 2 Page 22 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- password.html -->

<!-- XHTML form sent to password.php for verification -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Verifying a username and a password.</title>

<style type = "text/css">

td { background-color: #DDDDDD }

</style>

</head>

<body style = "font-family: arial">

<p style = "font-size: 18pt">

 Welcome to the CNT 4714 High Security WebPage <HR>

<p style = "font-size: 13pt">

Type in your username and password below.

<span style = "color: #0000FF; font-size: 10pt;

font-weight: bold">

Note that password will be sent as plain text - encryption not used in this application

</p>

password.html – page 1

CNT 4714: PHP – Part 2 Page 23 Mark Llewellyn ©

<!-- post form data to password.php -->

<form action = "password.php" method = "post">

<table border = "3" cellspacing = "3" style = "height: 90px; width: 150px;

font-size: 10pt" cellpadding = "1">

<tr>

<td colspan = "3"> Username: </td>

</tr>

<tr>

<td colspan = "3"> <input size = "40" name = "USERNAME"

style = "height: 22px; width: 115px" /> </td>

</tr>

<tr>

<td colspan = "3"> Password: </td>

</tr>

<tr>

<td colspan = "3"> <input size = "40" name = "PASSWORD"

style = "height: 22px; width: 115px" type = "password" />
</td>

</tr>
<tr>

<td colspan = "1">
<input type = "submit" name = "Enter" value = "Enter" style = "height: 23px;

width: 47px" /> </td>
<td colspan = "2"> <input type = "submit" name = "NewUser" value = "New User"

style = "height: 23px" />
</td>

</tr>
</table> </form> <HR> </body> </html>

password.html – page 2

CNT 4714: PHP – Part 2 Page 24 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- password.php -->
<!-- Searching a database for usernames and passwords. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<?php
extract($_POST);
// check if user has left USERNAME or PASSWORD field blank
if (!$USERNAME || !$PASSWORD) {

fieldsBlank();
die();

}
// check if the New User button was clicked
if (isset($NewUser)) {

// open password.txt for writing using append mode
if (!($file = fopen("password.txt", "a"))) {

// print error message and terminate script
// execution if file cannot be opened
print("<title>Error</title></head><body>
Could not open password file
</body></html>");

die();
}

password.php – page 1

CNT 4714: PHP – Part 2 Page 25 Mark Llewellyn ©

// write username and password to file and call function userAdded
fputs($file, "$USERNAME,$PASSWORD\n");
userAdded($USERNAME);

}
else {

// if a new user is not being added, open file
// for reading
if (!($file = fopen("password.txt", "r"))) {

print("<title>Error</title></head>
<body>Could not open password file
</body></html>");

die();
}

$userVerified = 0;

// read each line in file and check username and password
while (!feof($file) && !$userVerified) {

// read line from file
$line = fgets($file, 255);

// remove newline character from end of line
$line = chop($line);

// split username and password using comma delimited string
$field = split(",", $line, 2);

password.php – page 2

CNT 4714: PHP – Part 2 Page 26 Mark Llewellyn ©

// verify username
if ($USERNAME == $field[0]) {

$userVerified = 1;

// call function checkPassword to verify user’s password
if (checkPassword($PASSWORD, $field) == true)

accessGranted($USERNAME);
else

wrongPassword();
}

}

// close text file
fclose($file);

// call function accessDenied if username has not been verified
if (!$userVerified)

accessDenied();
}

// verify user password and return a boolean
function checkPassword($userpassword, $filedata)
{

if ($userpassword == $filedata[1])
return true;

else
return false;

}

password.php – page 3

CNT 4714: PHP – Part 2 Page 27 Mark Llewellyn ©

// print a message indicating the user has been added
function userAdded($name) {

print("<title>Thank You</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: blue\">
You have been added
to the user list, $name. Please remember your password.

Enjoy the site.");

}

// print a message indicating permission has been granted
function accessGranted($name) {

print("<title>Thank You</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: blue\">
Permission has been
granted, $name.

Enjoy the site.");

}
// print a message indicating password is invalid
function wrongPassword() {

print("<title>Access Denied</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: red\">
You entered an invalid
password.
Access has
been denied.");

}

password.php – page 4

CNT 4714: PHP – Part 2 Page 28 Mark Llewellyn ©

// print a message indicating access has been denied
function accessDenied() {

print("<title>Access Denied</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: red\">

You were denied access to this server.

");

}

// print a message indicating that fields
// have been left blank

function fieldsBlank() {
print("<title>Access Denied</title></head>

<body style = \"font-family: arial;
font-size: 1em; color: red\">

Please fill in all form fields.

");

}
?>

</body>
</html>

password.php – page 5

CNT 4714: PHP – Part 2 Page 29 Mark Llewellyn ©

Execution of

password.html. Client-

side XHTML form.

User clicks on New

User button to enter

their information.

Execution of

password.php to

enter a new user.

CNT 4714: PHP – Part 2 Page 30 Mark Llewellyn ©

Execution of

password.html. Client-

side XHTML form. User

clicks on Enter button to

submit and verify their

information.

Execution of

password.php to

invalidate an

attempted entry by a

user.

CNT 4714: PHP – Part 2 Page 31 Mark Llewellyn ©

How password.php Works
• The PHP script password.php verifies the client’s username

and password by querying a database. For this example, the

“database” of usernames and passwords is just a text file (for

simplicity). Existing users are validated against this file, and

new users are appended to it.

• Whether we are dealing with a new

user is determined by calling function

isset to test if variable $NewUser

has been set.

• When the user submits the password.html form to the server,

they click either Enter or New User button. After calling
function extract, either variable $NewUser or $Enter is

created depending on which button was selected. If
$NewUser has not been set, we assume the user clicked Enter.

The password.txt “database”

